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▪ ▪ ▪ ▪ ▪ 

It is now nearly two decades since publication of the first edition of my textbook 
Optimization in Operations Research. Since that time thousands of students and 
hundreds of instructors, researchers, and practitioners have had the opportunity to 
benefit from its consistent content and accessible design. Of course, not all have seen  
benefit, but many have written kind reviews and letters expressing their high regard 
for the book. Also, the Institute of Industrial Engineers honored it with their Joint 
Publishers Book-of-the-Year Award in 1999.

In this second edition, I have tried to preserve what was best about the original 
while updating it with new and enhanced content. The goal remains the same—to make 
the tools of optimization modeling and analysis accessible to advanced undergraduate 
and beginning graduate students who follow the book in their studies, as well as research-
ers and working practitioners who use it as a reference for self-study. Emphasis is on the 
skills and intuitions they can carry away and apply in real settings or later coursework.

Although aimed at that same goal, much is new in the second edition:

•	 Stochastic optimization is covered for the first time with Stochastic Programming in 
Chapter 4, and Markov Decision Processes in Chapter 9.

•	 Coverage of linear programming techniques is expanded in Chapter 6 to encompass 
dual and primal-dual methods.

•	 New sections rigorously formalize optimality conditions for linear programming in 
Chapter 6, and cutting plane theory in Chapter 12.

•	 Treatment of the Hungarian Algorithm for assignment, and min/max spanning tree 
methods has been added to Chapter 10.

•	 A whole new Chapter 13 is devoted to large-scale optimization techniques including 
Delayed Column Generation, Lagrangian Relaxation, Dantzig–Wolfe Decomposition, 
and Benders’ Partitioning.

•	 A whole new Chapter 14 treats the theory of computational complexity to provide a 
rigorous foundation for comparing problems and algorithms.

•	 Nonlinear Chapter 17 now includes coverage of the popular Sequential Quadratic 
Programming method.

•	 More generally, additional mathematical rigor is added to justifications of methods 
throughout the book, including tracking computational orders for most.

New topics seek to cover even more completely the full breadth of optimiza-
tion (or mathematical programming) that might be of interest to the book’s intended 
audience. Those span linear, integer, nonlinear, network, and dynamic programming 
models and algorithms, in both single and multi-objective context, and a rich sample 
of domains where they have been applied.

With content so inclusive, it is important to recognize that almost no reader 
or course will ever use it all, much less in the exact sequence presented in the book. 
For that reason, I have tried to make the organization of material as transparent and 
re-entrant as possible.

Preface
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Dependencies between sections are minimized and clearly identified with 
 explicit references. One- and two-page Primers concisely review prerequisite 
 material where it is needed in the development to save diversions to other  sources. 
To keep the focus on intuitions and strategies behind topics, Definitions, Principles 
and Algorithms are set out in easy-to-spot boxes, where high-level ideas can be 
located and absorbed quickly. When more detail is of interest, computations and 
discussions that may extend to several pages are recapped immediately in concise 
Examples (also marked for easy identification). For readers and instructors seeking 
more reinforcement with Exercises at the end of chapters, convenient icons clearly 
tag which of those require computer software ( ) or advanced calculators ( ), and 
which have answers provided at the back of the book ( ).

The new edition also builds on my firm belief that making optimization 
 materials accessible and exciting to readers of diverse backgrounds requires making 
the book a continuing discourse on optimization modeling. Every algorithm and 
 analytic principle is developed in the context of a brief story set out as an   Application.  
Also, computational exercises often begin with a formulation step. Many of those 
stories are derived from real OR applications footnoted in the development. Story 
settings—however contrived—provide a context for understanding both the needed 
decision variables, constraints and objectives of model forms, and steps in computa-
tion. For example, ideas like improving directions are more intuitive if some quantity 
in a story, not just a mathematical function, is clearly getting better as an algorithm 
is pursued. Likewise, binary decision variables become intuitive if the reader can see 
the either-or nature of some application decisions.

A related conviction is that students cannot really learn any mathematical top-
ic without working with it in homework exercises. That is why the second edition 
continues the tradition of the first in providing a full range of exercises at the end 
of each chapter. Some continue from the first edition, but many are new or posed 
over modified parameter values. The range of exercises begins with verifications of 
algorithm details, definitions and properties, which are essential to building intuition 
about the methods. But a range of formulation exercises is also included extending 
from tiny examples subject to graphic or inspection solution to more complex ap-
plications drawn from real OR work that challenge formulation skills. In addition, 
a new Group Projects appendix details assignments I have used for years to engage 
student teams more deeply in published reports of actual optimization applications.

Early introductory books in optimization focused heavily on hand application 
of algorithms to compute solutions of tiny examples. With almost all real optimiza-
tion now done with the help of large-scale computer software, more recent sources 
have sometimes limited attention to formulating data sets for submission to one of 
those algorithms—treating the computation largely as a black box.

I reject both these extremes. Graphic solution of small instances and hand 
implementation of algorithmic methods are essential if students are to internalize 
the principles on which the computation is based. The second edition continues my 
earlier pattern of moving quickly to such intuitive examples as each new concept is 
introduced. At the same time, no reader will ever grow excited about the power of 
optimization methods if he or she sees them applied only to tiny examples, much 
less abstract mathematical forms. That is why many of the examples and exercises in 
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both the first and second editions of the book ask students to apply available class 
software on models of greater size, where answers are not apparent until formal 
methods are shown to reveal them. Brief sections have also been added on coding 
models for software like AMPL.

Perhaps the greatest challenge in trying to bridge undergraduate and beginning 
graduate audiences in optimization is the question of mathematical rigor.  Elementary 
treatments simply introduce algorithmic mechanics with little if any argument for 
their correctness. On the other hand, more advanced books on optimization meth-
ods often devolve quickly into rigorous mathematical propositions and formal proofs 
with almost no discussion of underlying strategies, intuitions, and tractability.

My effort in the first edition was to bridge that gap by focusing on the intui-
tions and strategies behind methods, and on their relative tractability, while offering 
only limited arguments for their correctness. In the interest of better serving the 
introductory graduate and self-study audiences, the second edition adds significantly 
more rigor to the arguments presented. They are still not stated in theorem or proof 
format, but most key elements of rationales are now justified. 

I am proud of how the long overdue second edition has emerged, and I hope 
readers will agree that it is a significant advance over the first. I look forward to your 
comments as the new developments are absorbed.

I want to thank deeply the hundreds of students, friends, and colleagues at 
Georgia Tech, Purdue and the University of Arkansas for their advice and encour-
agement as the new edition has taken shape. This goes especially for a series of 
Graduate Assistants who have helped with exercises and solutions, and for the pa-
tience and support of department heads Marlin Thomas, Dennis Engi, John English, 
Kim Needy, and Ed Pohl. Finally, I need to thank my family—especially my wife 
Blanca and my son Rob—for their patience and encouragement in my long slog to 
finish the task.
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▪ ▪ ▪ ▪ ▪ 

Dr. Ronald L. (Ron) Rardin retired as Distinguished 
Professor Emeritus in 2013 after a 40-year record of 
leadership as an educator and researcher in optimi-
zation methods and their application culminating 
after 2007 as John and Mary Lib White Distinguished 
Professor of Industrial Engineering on the faculty of 
the University of Arkansas-Fayetteville. He headed 
the University’s Center on Innovation in Healthcare 
Logistics (CIHL) targeting supply chain and material 
flow aspects of healthcare operations in collaboration 
with a variety of healthcare industry organizations. 
He also took the lead with colleagues at Arkansas in 
founding the Health Systems Engineering Alliance 
(HSEA) of industrial engineering academic pro-
grams interested in healthcare.

Earlier, Professor Rardin retired in 2006 as 
Professor Emeritus of Industrial Engineering at 
Purdue University after completing 24 years there, 
including directing the Purdue Energy Modeling 
Research Groups, and playing a leading role in 

Purdue’s Regenstrief Center for Healthcare Engineering. Previously he had served 
on the Industrial and Systems Engineering faculty at the Georgia Institute of 
Technology for 9 years. He also served the profession in a rotation from 2000–2003 
as Program Director for Operations Research and Service Enterprise Engineering 
at the National Science Foundation, including founding the latter program to foster 
research in service industries.

Dr. Rardin obtained his B.A. and M.P.A. degrees from the University of 
 Kansas, and after working in city government, consulting and distribution for five 
years, a Ph.D. at Georgia Institute of Technology.

His teaching and research interests center on large-scale optimization modeling 
and algorithms, especially their application in healthcare and energy. He is an award 
winning teacher of those topics, and co-author of numerous research papers and 
two comprehensive textbooks: a graduate text Discrete Optimization, published in 
1988, and a comprehensive undergraduate textbook on mathematical  programming, 
Optimization in Operations Research, which was published in 1998 and received the 
Institute of Industrial Engineers (IIE) Book of the Year award. Among his many 
other honors, he is a Fellow of both IIE and the Institute for Operations Research 
and the Management Sciences (INFORMS), as well as 2012 winner of the IIE’s 
David F. Baker award for career research achievement.
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▪ ▪ ▪ ▪ ▪ 
Chapter 1 

Problem Solving with 
Mathematical Models

Any student with the most elementary scientific training has encountered the idea 
of solving problems by analyzing mathematical equations that approximate the 
physical realities of the universe we inhabit. Countless questions about objects 
falling, beams shearing, gases diffusing, currents flowing, and so on, are reduced to 
simple computations upon skillful application of one of the natural laws passed to 
us by Newton, Ohm, Einstein, and others.

The applicable laws may be less enduring, but “operations” problems such 
as planning work shifts for large organizations, choosing investments for available 
funds, or designing facilities for customer service can also be posed in mathematical 
form. A mathematical model is the collection of variables and relationships needed 
to describe pertinent features of such a problem.

In this chapter some of the fundamental issues and vocabulary related to oper-
ations research are introduced.

1.1 Or ApplicAtiOn StOrieS

Operations research techniques have proved useful in an enormous variety of applica-
tion settings. One of the goals of this book is to expose students to as broad a sample 
as possible. All application examples, many end-of-chapter exercises, several complete 
sections, and three full chapters present and analyze stories based on OR applications.

Whenever possible, these problems are drawn from reports of real operations 
research practice (identified in footnotes). Of course, they are necessarily reduced in 
size and complexity, and numerical details are almost always made up by the author. 

Operations research (Or) is the study of how to form math-
ematical models of complex engineering and management problems and how 
to analyze them to gain insight about possible solutions.

Definition 1.1 
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(d) Lost sales by week

Figure 1.1 Mortimer Middleman Example History

Other stories illustrate key elements of standard applications but greatly oversim-
plify, to facilitate quick learning.

A handful of continuing examples are even smaller and more contrived. They 
still have a story, but convenience in illustrating methodological issues takes prece-
dence over reality of application.

ApplicAtiOn 1.1: MOrtiMer MiddleMAn

Our first story is of the totally made-up variety. Mortimer Middleman—friends call 
him MM—operates a modest wholesale diamond business. Several times each year 



1.2 Optimization and the Operations Research Process   3

conclusionsdecisions

modelproblem
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inference

analysisassessment

Figure 1.2 Operations Research Process

1.2 OptiMizAtiOn And the OperAtiOnS reSeArch prOceSS

Operations research deals with decision problems like that of Mortimer Middleman 
by formulating and analyzing mathematical models—mathematical representations 
of pertinent problem features. Figure 1.2 illustrates this OR process.

The process begins with formulation or modeling. We define the variables and 
quantify the relationships needed to describe relevant system behavior.

Next comes analysis. We apply our mathematical skills and technology to see 
what conclusions the model suggests. Notice that these conclusions are drawn from 

MM travels to Antwerp, Belgium, to replenish his diamond supply on the interna-
tional market. The wholesale price there averages approximately $700 per carat, but 
Antwerp market rules require him to buy at least 100 carats each trip. Mortimer and 
his staff then resell the diamonds to jewelers at a profit of $200 per carat. Each of 
the Antwerp trips requires 1 week, including the time for Mortimer to get ready, and 
costs approximately $2000.

Customer demand values in Figure 1.1(a) show that business has been good. Over 
the past year, customers have come in to order an average of 55 carats per week.

Part (c) of Figure 1.1 illustrates Mortimer’s problem. Weekly levels of on-hand 
diamond inventory have varied widely, depending on the ups and downs in sales and the 
pattern of MM’s replenishment trips [Figure 1.1(b)].

Sometimes Mortimer believes that he is holding too much inventory. The hun-
dreds of carats of diamonds on hand during some weeks add to his insurance costs 
and tie up capital that he could otherwise invest. MM has estimated that these hold-
ing costs total 0.5% of wholesale value per week (i.e., 0.005 * $700 = $3.50 per 
carat per week).

At other times, diamond sales—and Mortimer’s $200 per carat profit—have been 
lost because customer demand exceeded available stock [see Figure 1.1(d)]. When a 
customer calls, MM must either fill the order on the spot or lose the sale.

Adding this all up for the past year, MM estimates holding costs of $38,409, unre-
alized profits from lost sales of $31,600, and resupply travel costs of $24,000, making the 
annual total $94,009. Can he do better?
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the model, not from the problem that it is intended to represent. To complete the pro-
cess, we must engage in inference, that is, argue that conclusions drawn from the model 
are meaningful enough to infer decisions for the person or persons with the problem.

Often, an assessment of decisions inferred in this way shows them to be too 
inadequate or extreme for implementation. Further thought leads to revised model-
ing, and the loop continues.

Decisions, Constraints, and Objectives
We always begin modeling by focusing on three dimensions of the problem:

The three fundamental concerns in forming operations re-
search models are (a) the decisions open to decision makers, (b) the constraints 
limiting decision choices, and (c) the objectives making some decisions pre-
ferred to others.

Definition 1.2 

In dealing with virtually any decision problem—engineering, management, or 
even personal—explicitly defining the decisions, constraints, and objectives helps to 
clarify the issues. Mortimer is obviously the decision maker in our diamond inven-
tory management example. What decisions does he get to make?

Actually, MM makes hundreds of decisions each year about when to replenish 
his stock and how much to buy. However, it is common in inventory management 
circumstances such as Mortimer’s to reduce the question to two policy decisions: 
What reorder point level of inventory should trigger a decision to buy new stock, and 
what order quantity should be purchased each time? These two variables constitute 
our decisions. We presume that each time on-hand inventory falls below the reorder 
point, Mortimer will head to Antwerp to buy a standard reorder quantity.

The next issue is constraints. What restrictions limit MM’s decision choices? In 
this example there aren’t very many. It is only necessary that both decisions be non-
negative numbers and that the order quantity conform to the 100 carat minimum of 
the Antwerp market.

The third element is objectives. What makes one decision better than another? 
In MM’s case the objective is clearly to minimize cost. More precisely, we want to 
minimize the sum of holding, replenishment, and lost-sales costs.

Summarizing in a verbal model or word description, our goal is to choose a non-
negative reorder point and a nonnegative reorder quantity to minimize the sum of hold-
ing, replenishment, and lost-sales costs subject to the reorder quantity being at least 100.

Optimization and Mathematical Programming
Verbal models can help organize an analyst’s thinking, but in this book we address 
a higher standard. We deal exclusively with optimization (also called mathematical 
programming).

Optimization models (also called mathematical programs) 
represent problem choices as decision variables and seek values that maximize 
or minimize objective functions of the decision variables subject to constraints 
on variable values expressing the limits on possible decision choices.

Definition 1.3 
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With our Mortimer Middleman example, the decision variables are

q! reorder quantity purchased on each replenishment trip

r! reorder point signaling the need for replenishment

(Here and throughout !  means “is defined to be.”) Constraints require only that

q Ú 100

r Ú 0

The objective function,

c1q, r2! total cost using a reorder quantity of  q and a reorder point r

remains to be explicitly represented mathematically. We seek to minimize c (q, r) 
over values of q and r satisfying all constraints.

Constant-Rate Demand Assumption
How we formulate constraints and objectives in terms of decision variables depends 
on what assumptions we are willing to make about the underlying system. We begin 
with a strong assumption regarding constant-rate demand: Assume that demand 
occurs at a constant rate of 55 carats per week. It is clear in Figure 1.1(a) that the de-
mand rate is not exactly constant, but it does average 55 carats per week. Assuming 
that it is 55 carats in every week leads to some relatively simple analysis.

If the demand rate is constant, the pattern of on-hand inventory implied by 
a particular q and r will take one of the periodic “sawtooth” forms illustrated in 
Figure 1.3. Each time a shipment arrives, inventory will increase by order size q, then 
decline at the rate of 55 carats per week, producing regular cycles. Part (a) shows a 
case where inventory never runs out. A safety stock of (theoretically) untouched in-
ventory protects against demand variability we have ignored. At the other extreme 
is part (c). Sales are lost because inventory runs out during the lead time between 
reaching the reorder point r and arrival of a new supply. Part (b) has neither safety 
stock nor lost sales. Stock runs out just as new supply arrives.

Back of Envelope Analysis
In cases where there are no lost sales [Figure 1.3(a) and (b)] it is easy to compute 
the length of each sawtooth cycle.

order quantity

demand rate
=

q

55

With lost sales [Figure 1.3(c)], each cycle is extended by a period when MM is out of 
stock that depends on both q and r.

Clearly, both modeling and analysis would be easier if we could ignore  
the lost-sales case. Can we afford to neglect lost sales? As in so many OR prob-
lems, a bit of crude “back of envelope” examination of the relevant costs will help 
us decide.

Lost sales may occur under the best of plans because of week-to-week  
variation in demand. Under our constant-rate demand assumption, however, 
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time

inventory

q

r
{

slope = 55 per week (d)

slope = 55 per week (d)

slope = 55 per week (d)

}safety
stock

1 week (l) q/55

q/55

q/55

{
{

{
(a) With safety stock

(b) No safety stock or lost sales

(c) With lost sales

time

inventory

q

r

{

1 week (l)

time

inventory

q

r

{

1 week (l)

} lost sales

Figure 1.3 Inventories Under Constant-Rate Demand
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there is no variation. Furthermore, MM can afford to add a unit to q and carry it 
for up to

cost of lost sale
weekly holding cost

=
$200
$3.50

 ≈ 57.1 weeks

rather than lose a carat of sales. Since the history in Figure 1.1 shows that inventory 
typically has been held no more than 4 to 6 weeks, it seems safe to make a second 
assumption regarding no lost sales: Assume that lost sales are not allowed.

Constant-Rate Demand Model
Since customers order a constant-rate 55 carats during the 1 week it takes Mortimer 
to carry out an Antwerp trip, both inventory at order arrival and lost sales can be 
computed by comparing 55 to r. If r 6 55, we lose 155 - r2 carats of sales each 
cycle, something we have decided not to permit. Thus we may deduce the constraint

r Ú 55

With r restricted to be at least 55, 1r - 552 is the safety stock, and the cycle 
of rising and falling inventory repeats every q>55 weeks. Inventory on hand ranges 
from 1r - 552 at the low point of a cycle to 1r - 552 + q as a shipment arrives. The 
average will be the midpoint of these values, 1r - 552 + q>2.

We are finally in a position to express all relevant costs. Holding cost per week 
is just the average inventory held times $3.50. Replenishment cost per week is $2000 
divided by the cycle length or time between replenishments. Our first optimization 
model is

minimize   c = 3.50 c1r - 552 +
q

2
 d +

2000
q>55

 (1.1) 

subject to q Ú 100, r Ú 55

Feasible and Optimal Solutions
Remember that our goal is to help Mortimer make decisions. Since the decisions 
are the variables in our model, we would like to characterize good values for deci-
sion variables q and r.

For example, q = 200, r = 90 is feasible in constant-rate demand model (1.1)  
because both constraints are satisfied: 200 Ú 100 and 90 Ú 55.

Here we can go farther and find an optimal solution. To begin, notice that if 
r deviates from demand 55, we incur extra holding cost and that no constraint pre-
vents choosing r exactly 55. We conclude that

r* = 55

A feasible solution is a choice of values for the decision vari-
ables that satisfies all constraints. Optimal solutions are feasible solutions 
that achieve objective function value(s) as good as those of any other feasible 
solutions.

Definition 1.4 
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will tell MM the perfect moment to start travel preparations. The asterisk (*) or star 
on a variable always denotes its optimal value.

Substituting this optimal choice of r of (1.1), the objective function reduces to

 c1q, r2! 3.50 aq

2
b + 2000 a 55

q
b  (1.2) 

Elementary calculus will tell us how to finish (differentiate with respect to q and 
solve for a suitable point where the derivative is zero). To avoid being diverted by 
mathematical details in this introductory chapter, we leave the computation as an 
exercise for the reader.

The graphic presentation of cost function (1.2) in Figure 1.4 confirms the calcu-
lus result that the minimum average weekly cost occurs at

q* = {C21200021552
3.50

≈ 250.7

Since this value easily satisfies the q Ú 100 constraint, it is optimal.

To summarize, our assumptions of constant-rate demand and no lost sales 
have led us to advise Mortimer to go to Antwerp whenever inventory drops below 
r* = 55 carats and to buy q* = 250.7 carats of new diamonds each trip. Substituting 
these values in the objective function of (1.1), total cost should be about $877 .50 per 
week or $45,630 per year—quite an improvement over Mortimer’s real experience 
of $94,009.

1000

500

1500

2000

100 200 300 400

q* = 250.7

c = 3.50
q

q+ 20002
55(( ))

weekly cost

order
quantity

Figure 1.4 Optimal MM Order Quantity Under Constant-Rate 
Demand
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1.3  SySteM BOundArieS, SenSitivity AnAlySiS, 
trActABility, And vAlidity

The modeling in Section 1.2 took as given many quantities, such as the demand 
per week and the cost per carat held, then computed optimal values for reorder 
point and reorder quantity. A line between those items taken as settled and those 
to be decided is called the system boundary. Figure 1.5 illustrates how parameters— 
quantities taken as given—define objective functions and constraints applicable to 
the decision model inside. Together, parameters and decision variables determine 
results measured as output variables.

EOQ Under Constant-Rate Demand
Only cost c is an output variable in our constant-rate demand model of Mortimer 
Middleman’s problem. Enumerating the parameters, let

d! weekly demand 155 carats2
f ! fixed cost of replenishment 1$20002
h! cost per carat per week for holding inventory 1$3.502
s ! cost per carat of lost sales 1$2002
/ ! lead time between reaching the reorder point and receiving a new  
   supply (1 week)

m! minimum order size 1100 carats2
A great attraction of our constant-rate demand analysis is that it can be done just as 
well in terms of these symbols. If lost sales are not allowed, repetition of the analysis 
(calculus) in terms of symbolic parameters will cause us to conclude that

 optimal reorder quantity q* = C2fd

h
optimal reorder point r*     = /d

Principle 1.5 

modeling
and

analysis
in the

decision
variables

system boundary

parameters
output
variables

Figure 1.5 System Boundaries




